3.97 \(\int \frac{\csc ^3(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=87 \[ -\frac{a \tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{2 f (a+b)^{3/2}}-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f (a+b)} \]

[Out]

-(a*ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/(2*(a + b)^(3/2)*f) - (Cot[e + f*x]*Csc[e
+ f*x]*Sqrt[a + b*Sec[e + f*x]^2])/(2*(a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.109579, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4134, 471, 12, 377, 207} \[ -\frac{a \tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{2 f (a+b)^{3/2}}-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^3/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(a*ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/(2*(a + b)^(3/2)*f) - (Cot[e + f*x]*Csc[e
+ f*x]*Sqrt[a + b*Sec[e + f*x]^2])/(2*(a + b)*f)

Rule 4134

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^
n)^p)/x^(m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc ^3(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (-1+x^2\right )^2 \sqrt{a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 (a+b) f}+\frac{\operatorname{Subst}\left (\int \frac{a}{\left (-1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 (a+b) f}\\ &=-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 (a+b) f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{\left (-1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 (a+b) f}\\ &=-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 (a+b) f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{-1-(-a-b) x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{2 (a+b) f}\\ &=-\frac{a \tanh ^{-1}\left (\frac{\sqrt{a+b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)}}\right )}{2 (a+b)^{3/2} f}-\frac{\cot (e+f x) \csc (e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 (a+b) f}\\ \end{align*}

Mathematica [A]  time = 1.03311, size = 140, normalized size = 1.61 \[ -\frac{a \sec (e+f x) \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a \cos (2 e+2 f x)+a+2 b} \left (\frac{(a+b) \csc ^2(e+f x)}{a}+\frac{\tanh ^{-1}\left (\sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}\right )}{\sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}\right )}{2 \sqrt{2} f (a+b)^2 \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^3/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(a*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x]*Sqrt[a + b - a*Sin[e + f*x]^2]*(((a + b)*Csc[e + f*x]^2)/a
 + ArcTanh[Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)]]/Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)]))/(2*Sqrt[2]*(a + b)^2*f
*Sqrt[a + b*Sec[e + f*x]^2])

________________________________________________________________________________________

Maple [B]  time = 0.414, size = 2199, normalized size = 25.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/4/f/(a+b)^(5/2)*(cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*
(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*
x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2+cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2
/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a*b+cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/
(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)
+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^2+cos(f*x+e)^3*((b+a*cos(f*x+e)
^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*
x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a*b+cos(f*x+e)^2*((b+a*cos(f*
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e
))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*
a^2+cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*
(a+b)^(1/2)+b)/sin(f*x+e)^2)*a*b+cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)
*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^2+cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e
)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(
1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a*b-2*cos(f*x+e)^2*(a+b)^(3/2)*a-cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*
x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)
^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2-cos(f*x+e)*((
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1
+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(
f*x+e)^2)*a*b-cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+
cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+c
os(f*x+e)))*a^2-cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(
1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1
+cos(f*x+e)))*a*b-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)
*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e)
)*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(
f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a*b-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e
)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(
1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^2-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(-4*(cos(f*x+e)*((b+a*c
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b
)^(1/2)+b)/(-1+cos(f*x+e)))*a*b-2*(a+b)^(3/2)*b)*sin(f*x+e)^2/(-1+cos(f*x+e))^2/cos(f*x+e)/((b+a*cos(f*x+e)^2)
/cos(f*x+e)^2)^(1/2)/(1+cos(f*x+e))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )^{3}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)^3/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [A]  time = 0.794466, size = 765, normalized size = 8.79 \begin{align*} \left [\frac{2 \,{\left (a + b\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) +{\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt{a + b} \log \left (\frac{2 \,{\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt{a + b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{4 \,{\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2} -{\left (a^{2} + 2 \, a b + b^{2}\right )} f\right )}}, \frac{{\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt{-a - b} \arctan \left (\frac{\sqrt{-a - b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right ) +{\left (a + b\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{2 \,{\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2} -{\left (a^{2} + 2 \, a b + b^{2}\right )} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + (a*cos(f*x + e)^2 - a)*sqrt(a + b)*
log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 2*b)/(c
os(f*x + e)^2 - 1)))/((a^2 + 2*a*b + b^2)*f*cos(f*x + e)^2 - (a^2 + 2*a*b + b^2)*f), 1/2*((a*cos(f*x + e)^2 -
a)*sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/(a + b)) + (a + b
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/((a^2 + 2*a*b + b^2)*f*cos(f*x + e)^2 - (a^2 + 2*a
*b + b^2)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc ^{3}{\left (e + f x \right )}}{\sqrt{a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**3/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(csc(e + f*x)**3/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )^{3}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)^3/sqrt(b*sec(f*x + e)^2 + a), x)